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The Attenuation Paradox and Internal Consistency

by

11Leon Jay Gleser

Department of Statistics

The Hopkins University

The conoept of "true score" lies at the heart of much of

classical mental test theory and, as mentinned in the previous paper in

this session (Finucci (1971)), is the basis of the derivation of

"attenuation theory" (formulas which correct correlation coefficients

for perturbing effects of errors of measuremnt). So much a part of the

thinking of mental test specialists has the concept of "true score" beccne

that the intuitions and consequences teat can be derived from such a

cnacept are frequently applied in sitvafinns where neither the "true score

plus error" model nor the conclusions resulting f7om that model are

applicable. In particular, misapplication of the "true score" concept

seems to be behind the commonly held opinion t' .t test validity can be

increased by increasing test nr ite..i reliability. This opinion was shown

by L.:,sviager (1954) o is false in h certain statistical model useful in

item enalysis of the dichotomously-s.:A.rod items found in many aptitude tests.

Loevinger (195)0 named the assertion which she verified in her paper "the

attenuation paradox".

1/ Presented at the American Educational Research Association 55th
Annual Meeting, New York City, February 4-7, 1971.
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The Concise Oxford Dictionary defines "paradox" as a "statement

contrary to received opinion ... seemingly absurd though perhaps really

well-founded ..., conflicting with pre-coansived notions of what is

reasonable or possible". Loevinger's (1954) "attenuation paradox" asserts

that it is possible to 'attenuate" or reduce test validity with an increase

in test and/or average item reliability. Although the word "attenuation"

appears botl, in "attenuation paradox" and in "correction for attenuation", the

connection between these concepts lies not sn much in their use of a common

word, but through the warning the "paradox" should give to practitioners

who naively use the "correction for attenuation" formulas in inappropriate

statistical contexts.

In the present paper, we first try to indicate why the concept of

"true score" naturally leads to the belief that test validity must increase

with an increase in test and/or average item reliability, and why for the

classical single-factor model first introduced by Spearman (19C4a) this relief

is, in fact, correct. Next, we introduce the statistical model used by

Loevinger (1954) t() e 'ablish the "attenuation raradox", and in intuitive

terms attempt to explain why the "attenuation paradox" holds in this

particular model. We do this by showing that high (internal) consistency or

reliability of test scores is an asset in increasing test validit,y under the

classical single-factor statistical model for mental tests, but can be a

liability when item scorn are modelled as in the statistical model discussed

by Loevinger. It is hoped that by this exposition, mental test specialists

will be led to more: critical appraisal of commonly used techniques and

concepts (including the "corrections for attenuation"), and will check that

their methods t test construction and comparison are consistent with their

statistical models.
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2. THE CLASSICAL MODEL

A central aim of mental test construction is to find a test which

assesses with maximal accuracy the extent crleveltowhicliagiven mental trait is

possessed by an individual or individuals. In the classical statistical

model of Spearman (1904a,b), it is assumed that the level of the mental

trait in question can be measured by a single variable Y. Values of Y are

assumed to have some probability distribution over that population of

individuals which is of interest. Without essential loss of generality for

this theoretical discussion, we may assume that Y has a mean (expectation)

of zero and a variance of one.

If we could observe Y without error, there would , of coarse,

be no need for a theory of mental tests (at least insofar as this theory refers

to test construction). However, in general the trait level Y is not directly

observable - it is latent. What we observe are scores Xi,X2,...,XN on N

items. These items (sub-tests, questions, reaction times, etc.) are assumed

to be statistically related to Y in that each item score individually can

be used to predict or estimate Y by mans of statistical regression

techniques. For a given individual (given value of 1), it is assumed that

the item scores X1,X2,...,XN are (conditionally) statistically independent,

and that given Y, the i
th

item score X
i

has (conditional) mean Y and

(conditional) variance (325., i = 1, 2,...,N.

The ab.ove assumptions relating the item scores XI,X2,...,Xn, and

Y are equivalent to a single-factor statistical model for the item scores,

with Y as tho common factor and each item score X
i

having equal factor

loading on Y. Consequently, we can assert that

( 1 ) Xi = Y = 1, 2,..., N,
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where Y, El, F2,...,Ew are statistically indspendent, each Ei has mean

equal to zero, and the variance of is ci2 , i = 1, 2,..., N. The model

(1) is a "true score plus error" model for the item scores, and in this

model, Y is the "true score".

To justify this model emoirically it has been necessary for

pearman, Gulliksen (1950), and other mental test theorists to conceive of

each item as being replicable on the sane individual in such a way that the

itemscoresX.and Xi on the i
th

item and its replication are associated

only through the fact that an individual brings the same mental trait level

Y to bear on the replicated items.Stated statistically, these theorists have

had to assume that en item could be paired Ath a supposedly parallel or

identical item in such a way that the resulting item scores have the

representation

(2)

X
i
= Y + E.

1)

X! .$ Y + El,

where Y, EE'areindepcndent,andE.and El have the same distribution.

(Thus, Ei and El both have mean zero and variance oi). Such assumptions

are open to criticism, both in terms of the circularity in definitrn

required to operationally define parallel items (see Loevinger (1947, 1957),

Ross and Lumeden (19(8)), and in terms of difficulty of practical application

(see Finucci (1971)). However, if accepted, these assumptions imply ::,hat if

we could infinitely replicate an item, the average of the resulting item scores

would equal Y. Hence, it seems that by maximizing internal consistency,

we can almost perfectly estimate Y by chrrsing a test having a large

enough collection of replicated items.

4
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Item analysis aims at choosing items in such a way that maximal

test validity is achieved with a minimal set of items. A mental test is thus

a choice of items from a certain item pool rf N items. Let T denote the

list of indices of items chosen (for example, T might equal (1, 3, 9, 10, 12)).

th
iIf the i tem is used in our test, we write i e T. The test score T is

the sum of item scores over all items in the test; hence T = Xi.
icT

If there are n items, n < N, in the test, then

(3) 1 1 1
T X. Y + / E. = Y + E .

l
n . er n .

2 cT
1

Hence T/n also can be written in "true- score - plus - error" form. The

"error" here is E =
n

E which is statistically independent of Y, and

icT
2

has mean 0 and variance 0
2

( 7./n
2
).

icT

To measure the accuracy with which the test score serves as an

estimace of Y (i.e., the validity of the test), for theoretical purposes we

may use the Pearson product-moment correlation coefficient ply between T

and Y. Using formula (3) for T,

(04)
1

PTY P(T/n)Y 2
(1 )2

Since Y is unobservable, we cannot in practice estimate ply directly.

Various sample measures of validity do exist (split-half validity, correlation

with another test presumed to measure Y, etc.). However, these are fairly

difficult to obtain in most cases. However, from formula (3) we sae that

Tin differs from Y by an error term E which is indepenOent of Y and

has mean 0 and variance 02 . As o
2

becomes smaller, E becomes lets

and less variable about its mean 0. Thus justifies pri as a measure

5



of accuracy since oTy = 1/(1+o

6

increases to 1 as 1
2
converges to 0

(see formula (4)). Cn the other hand, if we conceive of replicating each

of the items in the test as in (2), ve can think of a rerginated test with

test score T' = XI = n(Y + E'). We can thus measure the consistency,
isT

precision, or reliability of ou,r test score by seeing how well T can predict

its replicate T' (remember that both replicates are given to each

individual). A measure of this predictability is the product-moment

correlaticr. 2TT, which equals

1

°(T/n)(T1/n)
1 + G

2

The fact that the reliability p72, is inversely related to the variance

o
2

is intuitively obvious when we note that T = T' + E-E'. Since E and E'

are independent, the variance of E-E' is 2a
2

. Ilence the smaller the

variation in the error term E (and its replicate. E') is, the better able

we are to predict T from T' (or T' from T). As 0
2

goes to 0, PTT'

increases to 1 (sae (5)), As is proper for a measure of reliability.

Comraring formulas (4) and (5), we see that

(6)
'/PIT'.1..Y

Consequently, we have verified mathembtically that in the classical Spearman

single-factor model, test validity increases monotnnically with test

reliability. However, this direct tie between test validity and test

reliability occurs because in the "true score plus error" model satisfied by

the test score T, the error term doubles as both an indicator of how

accurately T measures Y and as an indicator of how repeatable the test score

T is when the test is replicated on the str,..e individual.
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Before leaving the classical model, we pause to point out that

test construction is often done by choosing those n items from the item

pool which have maximum item reliabilities Py X' This practice of
i i

judging a choice of items solely by item reliabilities, rather than also by

consideration of the corelations p between items (as would be necessary
XX .

J

in multiple regression), is elso a consequence of the classical "true-score-

plus-error" model (1). Indeed if we calculate
PX X'

and
PX

i
X
j

, we find

i

that

(7)

1
P
X .

11
X
i G.

2

1
-

X1 .Xj 2
,11 41a

so that
PX.X

The extremely tight correlational structure
! Pq

1 j
PX.X X'

3 J

revealed by this last mathematical result is not surprising, of course,

when we recall that our model is a single-factor model. Remembering that

2 2 2
n G and making use of (5) and (7), we find that the test

icT
reliability

PTT,
is a function solely of the item reliabilities; namely,

(8)
°'t T' 1

n

7,

ic7
X.X;

c) 1 J.

From formula (8), we see that if we want to choose the best test consisting

of n items, we should choose the n items having highest reliability in our

pool of items. Approximating the harmonic mean [
ieT

(1/PX
i
X
,)(1/n))

-1
by the

i

arithmetic mean

7
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`
= 11-

..

sT 1 1

in (8), we only decrease p
TT'

but obtain

(10) P TT 1 1
n-1 + (n-1)P+1

7

n n o

The right side of this inequality is of course, the Spearman-Brown prophecy

formula (see Finucci (1971)) commonly used for assessing test reliability.

3. THE NORMAL OGIVE MODEL

The classical statistical model described in Section 2 implicitly

assumes that item scores are continuouo variables. There is nothing in the

model outlined in Section 2 to make this assumption necessary. Mental test

tradition, however, has assumed that the mental trait level Y is a

continuous random variable. Indeed, tradition further assumes that Y has

a normal distribution. Despite chitllenges to this tradit..)n (see, for

example, Humphreys (1956)), most menta?. test theorists continue to adhere

to the view that mental trait levels are continuously (normally) distributed.

If this view is accepted, then a result from probability theory tells us that

the representation (1) for item scores Xi implies that Xi must be a

continuous randrm variable.

For most of the types of data originally considered by Spearman,

item (or sub-test) scores were continuous variables (or could be thought of

as rounded-off continuo, variables). Pwever, the basic items of modern

8
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mental aptitude tests are multiple choice questions. These questions are

customarily scored on a pa3s-fail, dichotomous basis (Xi = 1 or 0; ec if we

correct for guessing, Xi 1 or -1 /K, where It is the number of choices)

Such item scores are clearl,y not continuous, except to a ridiculously gross

approximation. Hence, we rfv,st either drop the "true-score-plus-error" model.

(1), or charge our assumptins aLcut the continuity of Y.

One attempt to preserve the basic features of the Spearman model,

and yet retain the ossumptin'i that Y is normally distributed, is the normal

ogive model. Here, we assume that to answer the i
th

item in an Id -item pool

of dichotomously scored item, an individual calls upon a certain level of

aptitude.XI which is availab'e to him at that point for answering the item.

This aptitude is assumed to :.e related to the level Y of the underlying

mental trait of interest by it single factor model equivalert to the model in

(1). However, it is additically assumed that the level Y and the "error"

Ei both are normally distributed variables. To pass '.n(t
th

item (obtain a

score 3i = 1 on the item the individual's level of aptitude must exceed

a difficulty level ai; otherwise, S. = O. Hence,

if X > a
i

(11) S
i

=

:( 0 if Xi < ai.

Cur interest still is to 4ccurately measure Y for a Given individal,

bot now the abservables a /re S1,S2,...,Sn rather than X1,X2,...,Xn.

If we plan to :look for a "true-score-plus-error" model for the

item scores, it soon bectmes apparent that there is no way to write the i
th

item score S
i

in a true - 'sere- plus -error fern in sach a way that the "true"

term depends romotonica ly upon Y, the error term is indopmdent of Y, and

the two terns are stati tically independent. For if such a representation

9
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exists, the average of an Infinite number of replications of the i
th

item

must equal the "true score". This limiting average, in the present model,

th,
is equal to the conditional probability that the 1 item is "passed" given

Y = Y1 ^r

a -y
(12) P(S = 11Y=y)= 1 - ---),

1 oi

where z) is the probability that a standard 11(0,1) normal variable is

less than or equal to z. The graph of this "true score" against y is an

S-shaped curve called a "normal ogive" ;which gives the model the name we

have assigned to it), and by looking at this graph we see that the true score

is indeed monotonic (but non-linear) in the mental trait level Y =y.

Unfortunately, the "error" Si - P(Si=illf=Y) has (conditional; variance

(Wai-Y)/6il)(1-Mai-y)/vi)) depending upon the "true score" (12), so that

the "error" is not independent of the "true score". Hence, we must be pre-

pared for consequences of the normal cgive model that seem "paradoxical" in

terms of the "true- score - plus - error" model.

For example. under the normal ogive model there is all "attenuation

paradox". To demonstrate this fact, ye first point out that items have

maximum reliability when their difficulty level is zero - that is, when they

have .50 provability of being "passed ". This assertion is true regardless of

what correlation the required aptitude level X. has with the underlying mental

trait level Y (see Sttgreaves (1561), Tucker (1946)). Hence, if we forget

that we are dealing with a statistical model in whici the "true-score-plus-

error" model is not appropriate, and naively apply the results described in

the previous seLtion, we would deci'e to sc.t the item difficulties of all of

our items at 0. 11:is wcuAd iLdeed ;:enn that the test score:

10



(13 ) S = . S.

icT

would 1-.ave i.qxim»m reliability. Further, item reliabilities (as measured by

the phi eceffieient between Si and its repetition Si) are monotonically

increasirg with the "reli.ability" coefficient pXi.i , of the aptitude called

th
upon to pass the i item (Sitgreaves (1961, p. 20)). Since the validity

of the X.'s for measuring Y increases to 1 as the "aptitutde re]labilAty"

pxx, increases to 1, this leads us tc (aspect that if the average of the

"apt.itde coefficients,

(14)

i-
PX.X!

sT 1 1

increases to one, so will the test validity psy.

Unfortunaely (Tucker (1546), Ioevinger (1954), Sitgreaves (1961)),

this cr'nclusion is 17alse. Instead, as the average "aptitude reliability"

PXX'
increases from 0 to 1, the test validity coefficient p

SY
at first

rises, then reaches a maximum, and then drops (attenuates) as the average

"aptitude reliability" pXX, continues increase.

The folloFing intuitive explanation for the phenomenon may give

insigh :. into the differences between the norral ogive model and the classical

model. First note (see Culliksen 1545)), that when the average "attitude

reliability" Pxx, equals one and all of the item difficulties are zero, then

all of the item scores are 1 if Y is non-negative, and all of the item

scores are 0 if Y is negative. In this case, all of the aptitudes Ni

perfectly reasure Y, the item scores are perfectly reliable and accurate

Treasures, but what is actually measured by the item scores is merely the

Answer to thk. lAestion: "Is Y non-negative?" Here, 1(0 items pr.)vide no

11
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more information about Y than dces one item, and the information provided

does no more than, identify the sign (plus or minus) attached to the ragnit.,6e

of Y.

Cn the other hand, if we permit ourselves to use items which are

less than perfectly reliable, and in fact assign item-difficulties of the

form:

(15)

-3,

.2
a
2 33'

4
a3 . -3 +

a
i

= -3 4. 2( ---),
33

'-
. 3,6

100

then when every aptitude Xi is exactly ecJal to Y, i = 1,2,...,100, a test

score of S = k, k < 100, tells us th):, the first k it,m scores

S1,S2,...,Sx are all 1 and that the last 100-k iten scores Sk+i'Sk+2'''''5100

are all 0. Wny? Bemuse Si = 1 if and only if Y > ai, and since

al = a2 < a100'
the fact that Y is greatlr than or equal to a

(Si = 1) implies that Y > ai for all i < j (Si = 1, all i < J), whereas

if Y < at for scne t., then Y < ai for all i > !. In other words, S and Y

are monotonically rf,..ted. Further, if we know that S = k, I < k < 100, we

can show that -3 + (2(k-1)/33) < Y < -3 + (2k/33), while S = 0 means that

Y < -3, and S = 100 means that Y > 3. Clearly these 100 items, although

Each is less reliable than the items who difficulties are all zero,

provide greater validity for measuring Y.

12
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From the above discussion, we see that if we know that the averau

"aptitude reliability"
°XX'

is close to onu, we are at a disadvantage in

terms of test validity if we must keep item difficulties the same

(ai = 0, i = 1,2,...,100), even though item reliability may be maximized.

Hence, the maxims of Section 2 provide no guideline in this case. :f we are

required to set all item difficulties equal to zero, then some other

mechanism is needed to provide informatior abo,A Y similar to that provided

by the spread-colt choices (15) for the ails. Amazingly enough, and in contrast

to our use of the word "error", when avera:e "aptitutde reliability" is less

than one, the "errors" E.
1

= X.1 -Y provide this mechanism and allow us to

increase test validity. If we replace the word "error" by "randomization",

this result snould not surprise statisticians (who knew that controlled

randomization in :.ample survey and experimental design can improve accuracy

of measurement), but it certainly will surprise anyone who is used to

thinking of the error Ei in the "true- score - plea, -- error" model as n. source

of lack of consistency and inaccuracy for measurement of Y. Nevertheless,

in the present model a certain amount of "error" helps improve

Remembering that al = a2 = = a100 = 0 and that 7 < 1, let us in fact

assume for convenience that
/DX X'

= p, g11 i. Looking back at the definiton
i

of Si (Equation (13),, we see that we can rewrite S
i

the form

(16)

1

Si =
{

if Y + E
i
> 0,

tf +
1
< 0,

1 if Y> - E

0 if Y < - E

i = 1,2,...,100. ince Y and El are independent, (16) shows that the Ei's

act as a random allocation of item difficulties for a nes- non ^1 ogive model

13
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in which the item attitudes X, are exactly equal to Y. since almost surely

the values of El, E2"' "E100 are unequal (and fact are a sample from a

normal distribution with mean 0 and variance (1-0/p), it seems reasonable

that there is some value of the common "aptitude reliability" p (or rangc of

values for p) where this random choice of item difficulties will improve test

validity over the fixed choice ai . 0, all i, If p is near 0, the

variance of each E. is nearly infinite, and the random item difficulties E.

will be tco far spread out to provide much ifornation about Y. (This can

also be se el by rem?mbering that X. = Y + Ei, and noting that when the

variance of E
i

is near infinity, Y is basically unobservable.) For p near 1,

to -variance of each E
i

is nearly 0, and thus E
i
varies only very little

from its mean of 0, so that this case is essertially that of fixed item

difficulties. Hence, the value of p that will allow is to improve upon the

fixed item difficulty, perfect reliability case, lies somewhere between c=0

and p = 1. Mathematically it is found that for a 100-item test, maximum test

validity of psy = .9729 occurs for an (average) "aptitude reliability" of

p = .2268 (Sitgreaves (19q)).

The above discussion provides an example where an acceptance of

"error" helps to improve accuracy of measurement. It also indicates that

deviation from the classical "true-score-plus-error" model, nn matter how

seelAingly trivial these deviations are, may have major consequences for the

theory and interpretation of indices of test performance. In any testing

problem, therefore, the mental test spectalist would do better to be

his methods and conclusions on the otatistical model, rather than trusting to

intuition obtained from the olnssicAl "true-s,:ore-plus-error" model to guide

his thinking,

1'1
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